必应chatgpt操作步骤
淘宝搜:【天降红包222】领超级红包,京东搜:【天降红包222】
淘宝互助,淘宝双11微信互助群关注公众号 【淘姐妹】
ChatGPT中文调教指南浏览人数已经达到34,如你需要查询该站的相关权重信息,可以点击"爱站数据""Chinaz数据"进入;搜索收录:百度收录360收录搜狗收录进行查看。 由于本站性质为分类目录导航网站,"ChatGPT中文调教指南"的链接收录自互联网,更多网站价值评估因素如:ChatGPT中文调教指南的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找ChatGPT中文调教指南的站长进行洽谈提供。如该站的IP、PV、跳出率等!
本站八千网址导航提供的ChatGPT中文调教指南都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由八千网址导航实际控制,在2023年2月12日 00:01收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,八千网址导航不承担任何责任。
ChatGPT详细讲解 ChatGPT带来的惊喜与焦虑
chatgpt官网,chatgpt国内能用吗,chatgpt怎么用,chatgpt安装ChatGPT 发自 凹非寺量子位 | 公众号 QbitAI
Wolfram语言之父Stephen Wolfram,又来给ChatGPT背书了。
上个月,他还专门写过一篇文章,力荐自家的计算知识搜索引擎WolframAlpha,希望能跟ChatGPT来个完美结合。
大概表达的意思就是,“你计算能力不达标,那可以把我的’超能力’注入进去嘛”。
而时隔一个多月,Stephen Wolfram围绕“ChatGPT是什么”和“为什么它能这么有效”两个问题,再次发表万字长文做了番深入浅出的详解。
(为了保证阅读体验,以下内容将以Stephen Wolfram的第一人称来叙述;文末有彩蛋!)
一次添加一个单词
ChatGPT 能够自动生成类似于人类撰写的文本,这一点非常引人注目,也是出乎意料的。那么,它是如何实现的?为什么它能够如此出色地生成有意义的文本呢?
在本文中,我将大致介绍 ChatGPT 内部运作的机制,并探讨它为什么能够成功地生成令人满意的文本。
需要说明的是,我将重点关注 ChatGPT 的整体机制,虽然会提到一些技术细节,但不会做深入的探讨。同时,还要强调的一点是,我所说的内容同样适用于当前其它的“大型语言模型”(LLM),而不仅仅限于 ChatGPT。
首先需要解释的一点是,ChatGPT 的核心任务始终是生成一个“合理的延续”,即根据已有的文本,生成一个符合人类书写习惯的下一个合理内容。所谓“合理”,是指根据数十亿个网页、数字化书籍等人类撰写内容的统计规律,推测接下来可能出现的内容。
例如,我们输入了文本“AI 最好的事情是它的能力”,ChatGPT 就会在数十亿页的人类文本中查找类似文本,然后统计下一个单词出现的概率。需要注意的是,ChatGPT 并不是直接对比文字本身,而是以某种意义上的“意思匹配”为依据。最终,ChatGPT 会生成一个可能的单词列表,并给出每个单词的概率排名:
值得注意的是,当ChatGPT完成像写文章这样的任务时,它实际上只是一遍又一遍地询问:“在已有的文本的基础上,下一个词应该是什么?”――并且每次都会添加一个词(更准确地说,如我所解释的,它添加一个“token”,这可能只是单词的一部分,这就是为什么它有时会“创造新词”的原因)。
在每一步中,它都会得到一个带有概率的单词列表。但是,它应该选择哪个单词来添加到它正在写作的文章(或任何其他东西)中呢?
有人可能认为应该选择“排名最高”的单词(即被分配最高“概率”的单词)。但这就是一些神秘的事情开始悄悄发生的地方。因为由于某种原因――也许有一天我们会有一种科学式的理解――如果我们总是选择排名最高的单词,我们通常会得到一篇非常“平淡”的文章,从不显示任何创造力(有时甚至逐字重复)。如果有时(随机地)我们选择较低排名的单词,可能会得到一篇“更有趣”的文章。
这里存在随机性意味着,如果我们多次使用相同的提示,很可能每次都会得到不同的文章。与voodoo理念一致,过程中会有一个特定的所谓“温度”(temperature)参数,它决定较低排名的单词会被使用的频率,对于文章生成,这个“温度”最好设置为0.8。值得强调的是,这里没有使用“理论”;这只是已被证明在实践中起作用的事实。例如,“温度”概念之所以存在,是因为指数分布(来自统计物理学的熟悉分布)恰好被使用,但至少就我们所知,它们之间没有“物理”联系。
在继续之前,我应该解释一下,为了表达的目的,我大多数时候不会使用ChatGPT中的完整系统;相反,我通常会使用一个更简单的GPT-2系统,它具有很好的特性,即它足够小,可以在标准台式计算机上运行。因此,我所展示的几乎所有内容都将包含明确的Wolfram语言代码,您可以立即在计算机上运行。
例如,下面这张图展示了如何获得上述概率表的。首先,我们必须检索底层的 “语言模型 “神经网络:
稍后,我们将深入了解这个神经网络,并讨论它是如何工作的。但目前为止,我们可以将这个“网络模型”作为一个黑盒应用到我们的文本中,并根据模型认为应该遵循的概率,请求前5个单词:
获取结果后,会将其转换为显式格式化的“数据集”:
下面是重复 “应用模型 “的情况―在每一步中加入概率最高的词(在此代码中指定为模型中的 “决定”):
如果再继续下去会怎样?在这种(”零度”)情况下,很快就会出现相当混乱和重复的情况。
但如果不总是挑选 “顶级 “词,而是有时随机挑选 “非顶级 “词(”随机性 “对应 “温度 “为0.8)呢?我们就又可以续写文本了:
而每次这样做,都会有不同的随机选择,对应的文本也会不同。例如以下这5个例子:
值得指出的是,即使在第一步,根据已有的文本,也有很多可能的“下一个词”可供选择(在温度为0.8的情况下),尽管它们的概率很快就会下降(是的,在这个对数图上的直线对应于一个 nC1 的“幂律”衰减,这是语言的一般统计特征):
那么如果我们继续写下去会发生什么呢?这里有一个随机的例子。它比使用最高排名的单词(零度)的情况要好一些,但仍然是有点奇怪:
这是使用最简单的GPT-2模型(来自2019年)完成的。使用更新的更大的GPT-3模型结果更好。这里是使用相同的“提示”,但使用最大的GPT-3模型生成的使用最高排名单词(零度)的文本:
接下来是一个“温度为0.8”的随机例子:
这些概率是从何而来?
ChatGPT总是基于概率来选择下一个单词。但这些概率从何而来呢?
让我们先从一个更简单的问题开始。当我们考虑逐字母(而非逐词)生成英文文本,该如何确定每个字母的概率呢?
最简单的方法是取一份英文文本样本,然后计算其中不同字母的出现频率。例如,这是“猫”在维基百科文章中字母的计数情况(此处省略了计数结果):
这是“狗”的情况:
结果相似,但并不完全一样(毕竟,“o”在“dogs”文章中更常见,因为它本身就出现在“dog”这个单词中)。然而,如果我们取足够大的英文文本样本,最终可以期望得到至少相当一致的结果:
下面是我们只用这些概率生成字母序列的样本:
我们可以通过像是将空格视为带有一定概率的字母来将其分解为“单词”:
可以通过强制“单词长度”的分布与英文一致,来更好地分割“单词”:
这里我们没有生成任何“真实的单词”,但结果看起来稍微好了一些。然而,要进一步推进,我们需要比仅仅随机选择每个字母更多的工作。例如,我们知道如果出现了“q”,下一个字母基本上必须是“u”。
这是字母本身的概率图:
这是典型英文文本中字母对(“2-grams”)的概率图。横轴是可能的第一个字母,纵轴是第二个字母(此处省略了概率图):
在这里,我们可以看到,“q”列除了在“u”行上以外,其他地方都是空白(零概率)。那么,现在我们不再逐个字母地生成“单词”,而是使用这些“2-gram”概率,一次生成两个字母来生成它们。以下是结果的一个样本――恰好包括一些“实际单词”:
通过足够多的英语文本,我们不仅可以很好地估计单个字母或字母对(2-gram)的概率,还可以估计更长的字母组合的概率。如果我们使用逐渐变长的n-gram概率来生成“随机单词”,我们会发现它们逐渐变得“更加真实”。
但是现在让我们假设――与ChatGPT一样――我们处理的是整个单词,而不是字母。英语中大约有40,000个常用单词。通过查看大量的英语文本(例如几百亿个单词的几百万本书),我们可以估计每个单词的出现频率。使用这个估计,我们可以开始生成“句子”,其中每个单词都是独立地随机选择的,其概率与它在语料库中出现的概率相同。以下是我们得到的一个样本:
毫不意外,这是无意义的。那么我们该怎么做才能更好地生成句子?就像处理字母一样,我们可以开始考虑不仅单词的概率,还可以考虑单词对或更长的n-gram的概率。对于单词对,以下是5个例子,所有情况都是从单词“cat”开始:
看起来稍微“更有意义”了一点。如果我们能够使用足够长的n-grams,我们可能会想象基本上会“得到一个ChatGPT”――也就是说,我们会得到一些生成具有“正确的整体文章概率”的长篇文字序列的东西。但是问题在于:实际上没有足够多的英语文本被写出来,以便能够推断出这些概率。
在网络爬虫中可能有数百亿个单词;在数字化的书籍中可能还有另外数百亿个单词。但是,即使是 4 万个常用单词,可能的 2 元组数量已经达到 16 亿,而可能的 3 元组数量则高达 60 万亿。因此,我们无法通过现有的文本估计这些可能性的概率。当我们需要生成 20 个单词的“文章片段”时,可能性的数量已经超过了宇宙中的粒子数量,所以在某种意义上,它们无法全部被写下。
那么,我们该怎么办呢?关键的想法是建立一个模型,让我们能够估计序列应该出现的概率,即使我们从未在我们查看的文本语料库中明确看到过这些序列。而在ChatGPT的核心正是所谓的“大型语言模型”(LLM),它被构建出来可以很好地估计这些概率。
(由于篇幅原因,此处省略“什么是模型”、“神经网络”、“机器学习和神经网络的训练”、“神经网络训练的实践与知识”、“Embedding概念”等章节的编译,感兴趣读者可自行阅读原文)
ChatGPT的内部结构
毫无疑问,它最终是一个巨大的神经网络,目前版本是一个拥有 1750 亿个权重的 GPT-3 网络。在许多方面,这个神经网络与我们讨论过的其它神经网络非常相似,但它是一个专门用于处理语言的神经网络。最显著的特征是一个被称为“Transformer”的神经网络架构。
在我们上面讨论的第一类神经网络中,每个神经元在任何给定层都与前一层的每个神经元基本上相连(至少有一些权重)。但是,如果要处理具有特定已知结构的数据,这种完全连接的网络(大概)是overkill的。因此,在处理图像的早期阶段,通常会使用所谓的卷积神经网络(“convnets”),其中神经元实际上是布置在类似于图像像素的网格上,并且仅与网格附近的神经元相连。
Transformer的思路是对组成文本的token序列做出至少有点类似的事情。但是,Transformer不仅定义了一个固定区域,在该区域内可以建立连接,还引入了“注意力”的概念――“注意力”的概念更多地集中在序列的某些部分而不是其他部分。也许有一天,通过训练,直接启动通用神经网络并进行所有自定义都会有意义。但至少目前在实践中,模块化东西是至关重要的,就像Transformer一样,也可能是我们的大脑所做的一样。
那么 ChatGPT(或者更准确地说,它所基于的GPT-3网络)实际上是在做什么呢?请记住,它的总体目标是基于其从训练中看到的东西(其中包括查看了来自网络等数十亿个页面的文本),“合理地”续写文本。因此,在任何给定的时刻,它都有一定量的文本,并且其目标是为下一个token pick一个适当的选择。
ChatGPT的运作基于三个基本阶段。首先,它获取与目前文本对应的token序列,并找到代表它们的embedding(即一个数字数组)。然后,它以“标准神经网络方式”对此embedding进行操作,使值在网络中的连续层中“波动”,以产生一个新的embedding(即一个新的数字数组)。接着,它获取该数组的最后一部分并生成一个包含约50,000个值的数组,这些值将转化为不同且可能的下一个token的概率(是的,恰好有与英语常用词汇相同数量的token,尽管只有大约3000个token是完整单词,其余是片段。)
关键的一点是,这个pipeline的每个部分都由神经网络实现,其权重由网络的端到端训练决定。换句话说,实际上,除了整体架构之外,没有什么是“明确设计的”;一切都是从训练数据中“学到”的。
而,在架构建立的方式上有很多细节――反映了各种各样的经验和神经网络知识。虽然这绝对是一个细节问题,但我认为讨论其中一些细节很有用,至少可以了解构建ChatGPT所需的内容。
首先是embedding模块。这是GPT-2的一个示意图,用Wolfram语言表示:
这段文字介绍了一个名为“embedding module”的模块,它有三个主要步骤。第一步,将文本转化为token序列,每个token都用一个单层神经网络转化为长度为768(对于GPT-2)或12288(对于ChatGPT的GPT-3)的embedding向量。同时,模块中还有一个“辅助通路”(secondary pathway),用于将token的整数位置转化为embedding向量。最后,将token值和token位置的embedding向量加在一起,生成最终的embedding向量序列。
为什么要将token值和token位置的embedding向量相加呢?似乎并没有特别科学的解释。只是尝试了各种不同的方法,这种方法似乎能够奏效。而且神经网络的传统也认为,只要初始设置“大致正确”,通过足够的训练,通常可以自动调整细节,而不需要真正“理解神经网络是如何进行工程配置的”。
这个“embedding module”模块的作用是将文本转换为embedding向量序列。以字符串“hello hello hello hello hello hello hello hello hello hello bye bye bye bye bye bye bye bye bye bye”为例,它可以将其转化为一系列长度为768的embedding向量,其中包括从每个token的值和位置中提取的信息。
这里展示了每个tokenembedding向量的元素,横向显示了一系列“hello”embedding,其后是一系列“bye”的em ChatGPT人工智能软件帮助大家能够很好的了解到不同的人工智能内容带来的乐趣,这些不同的方面都有很好的体验为你产生。你可以看到十分不错的发现,在这里进行更多的交流。十分流畅的对话为用户提供,任何的问题都能够得到解答,并且交流也是很顺畅的。 1、这里的多种不同的画面都非常有趣,为你产生十分精彩的效果。 2、带来的各种不同的体验也都是非常不错的,让你尽情的获得这些发挥。 3、随时都能够体验到不错的画面,这里的各种发现也会让你很好的进行了解。 4、产生更多有意思的画面,尽情的发挥你自己的想法来达成这里的更多操作。 1、让用户能够根据自己的想法来进行游戏的游玩,带来更多不同的体验。 2、你会发现自己的说辞完全被ai掌握,同时也能够锻炼自己的口才发挥。 3、交流的快乐是很有意思的,尽情的产生更多的乐趣,你会达成更好体验。 4、各种精彩的发现,人工智能的逆袭,仿佛成精了一般,完全看不出ai的样子。 ChatGPT人工智能软件帮助用户进行许多的聊天操作,这些独特的功能都能让你很好的了解,带来更多不同的发现,任何时候都能让你尽情的体验到这些丰富的内容,带来最好的软件使用体验。 chatgpt会影响人工智能行业吗 chat gpt人工智能
chatgpt是什么意思,chatgpt怎么用,chatgpt安装,chatgpt中文