淘优惠

淘优惠

百度版chatgpt项目官宣 百度推出类似chatgpt的产品

热门文章 0

淘宝搜:【天降红包222】领超级红包,京东搜:【天降红包222】
淘宝互助,淘宝双11微信互助群关注公众号 【淘姐妹】

百度版chat,百度版超级群英传,百度版超级联盟,百度版创造与魔法

这不难理解。我们可以清晰地看到,ChatGPT相关技术,百度在中国乃至全球范围均具有综合优势。

ChatGPT处在技术架构的模型层,而百度在芯片、框架、模型、应用四层技术栈均有布局,其文心系列大模型在行业已普遍应用,而能支撑该训练模型的框架,目前国内没有谁可以超越百度飞桨。

尤其重要的是,中国ChatGPT将给搜索带来立竿见影的变化。搜索会充分利用类ChatGPT技术升级,成为代际变革。生成式内容也会极大丰富内容生态和内容供给,让成熟的搜索业务焕发生机。

而国民级搜索引擎百度本就是一个能听得懂、看得清用户需求的“超级大脑”。对于用户而言,不再是简单的搜索工具,而是一个深度理解用户的私人数字助理。一直以来,百度在搜索技术方面都走在行业领先的地位。并且能够支撑人工智能芯片、基础设施的研发,且没有外溢,这是让百度成为一个AI平台的价值所在。

所以,如果百度做ChatGPT,最顺理成章的落地应用是百度搜索,这意味着大家以后在百度搜索问题,除了结果列表,还能获得类似于私人助理一对一的用户体验,这与百度的人人拥有数字助理的原景不谋而合。百度也真正做到了“把复杂留给百度,把简单留给用户”

此外,做智能云多年,百度已经为制造业、能源、汽车、公共事业等多个领域占据领跑地位,成为这些领域背后企业崛起的数字支撑力量,而在AI领域,不论是数据参考还是技术研发,十年来百度积累深厚,在AI技术全栈的业务布局深远,放眼全球科技公司也难出其右。长期来看,如果ChatGPT可以作为平台开放,对百度云业务也将有极大促进。

毫无疑问,ChatGPT是又一个起点,它将人们对百度AIGC的期待拉入了一个新的高度,而百度类似ChatGPT的聊天机器人一旦落地,其在资本市场势必还会迎来身价飞涨,参考早前微软一宣布要结合ChatGPT和必应搜索,股价一路走高。

十年累计研发投入超1000亿元,换来的是AI专利连续五年排名国内首位;百度智能云在AI共有云领域连续四年居中国市场份额第一;全球知名调研机构Guidehouse连续两年将Apollo列为全球自动驾驶领域四大“领导者”之一,这也是领导者阵营中唯一的中国企业。

按照李彦宏在不久前举办的第五届Create AI开发者大会上所说的,“AI从今天走向未来的过程中,起起落落时有发生。积极的方面是,过去一年,无论是技术层面还是商业应用层面,AI都有了方向性的改变。”

而将自身的创新能力、商业价值和社会责任进一步释放,百度始终都在路上。ChatGPT,会为百度AI乃至中国AI科技带来多么性感的前景,时间终将告诉。拭目以待!

发布于:北京市

chatgpt是谷歌的吗 chatgpt只能在谷歌浏览器用吗

chatgpt,chatgpt官网,chatgpt下载,chatgpt怎么用

  中国ChatGPT终于靴子落地。今日一早,百度对外证实了其正在研发类ChatGPT项目,官宣项目名为文心一言(英文名ERNIE Bot),并称目前该产品在做上线前的冲刺准备工作,预计三月份完成内测,面向公众开放。

  值得注意的是,就在百度官宣文心一言前几个小时,谷歌也正式宣布了其聊天机器人Bard。上周,谷歌、Meta、苹果等一众硅谷科技巨头在其财报电话会上,不约而同地反复提及“人工智能”“生成式AI”或“机器学习”等词。

  这场由ChatGPT引发的飓风,让全球最顶尖的科技力量再次聚焦于人工智能。这是一场算力、数据、技术的比拼,也注定是一场中美巨头之间的竞争。

  百度做ChatGPT,不是“追风口”

  根据《财富》杂志披露,OpenAI从2022年初开始开发聊天机器人,过程中一度改变策略,最终在2022年11月30日正式发布ChatGPT。并且,国内外多位科技专家已经指出,ChatGPT是基于ChatGPT-3大模型优化而来,并不存在底层模型的突破。

  因此,在方向明确的情况下,对本就拥有大模型技术的企业来说,快速打造类似产品并不是难事。

  近年来,大模型、AIGC在人工智能领域早已是公认方向,在ChatGPT诞生之前,谷歌、百度等企业也披露过类似的技术进展,只是一直未引起过全球范围广泛关注。

  比如,2022年初谷歌就曾发布对话AI模型LaMDA,后来还引发了谷歌工程师认为AI产生“人格”而被停职的故事。现在谷歌宣布的聊天机器人Bard,也就是在LaMDA基础上研发。

  百度是国内少有拥有大模型技术的企业,其从2019年开始进行大模型探索,打造文心大模型家族,包含PLATO、ERNIE 3.0等多个NLP大模型,其中PLATO也主打对话交互。从技术上看,文心过往在NLP模型上的实践,将成为百度打造“文心一言”的基础。

  纵览百度过去一年的公开发言,在AIGC还未成为风口时,就已经高频提及这一关键词。去年9月,百度CEO李彦宏还曾断言,人工智能发展在“技术层面和商业应用层面,都有方向性改变”。这都暗示了百度在生成式AI领域早有动作。

  因此,比起说“追风口”,倒不如说准备已久的百度终于等来了属于它的机会。

  盘中拉升17%,百度迎来价值回归

  在市场传出百度或将研发类ChatGPT产品后,百度股价就一路走高,今日百度官宣“文心一言”后,港股股价更是盘中拉高17%。

  机构投资者也对此给出了积极评价,美国投行麦格理称百度“可见的上行惊喜将会是公司有机会在中国推出类似ChatGPT的人工智能(AI)聊天机器人,该公司将百度今明年经调整每股盈测上调13%/4%,并预计今年经调整经营利润率将提高2.4个百分点至18.3%。资管巨头贝莱德则增加持仓,将其在百度的持股比例增至6.6%,成为该公司最大股东之一,

  资本市场对百度文心一言的期待可见一斑。

  从商业价值上看,OpenAI已经初步证明了ChatGPT的商业化可行性。OpenAI预测,2023年将实现收入2亿美元,2024年将超过10亿美元。Sam Altman 最近对投资者表示,OpenAI很快就能产生高达10亿美元的年收入,部分是通过向消费者和企业收取产品费用实现的。

  参考ChatGPT的落地路径,文心一言也有望在搜索、智能云等领域为百度创造价值。尤其是在搜索场景中,有媒体指出,不同于微软与谷歌两强相争的局面,百度同时拥有了文心一言技术和搜索市场优势,它将成为中国的“OpenAI+Google”。

  长期而言,比尔・盖茨评价ChatGPT称,这种人工智能技术出现的重大历史意义,不亚于互联网和个人电脑的诞生。那么,百度、微软、谷歌,谁将率先抢下这张驶向AI原生时代的船票?

炒股开户享福利,入金抽188元红包,100%中奖!
海量资讯、精准解读,尽在新浪财经APP

责任编辑:马婕


中国何时能有ChatGPT?“现象级”产品背后的AI技术发展与展望

中国何时能有自己的芯片,中国何时能有鱼鹰,中国何时能有自己的空间站,中国何时能有核动力航母?

“ChatGPT,人工智能会如何发展?”

“人工智能的行业落地将继续加速,今后会更加广泛应用于工业、消费、金融、医疗、交通、教育、政府等多个领域。”

今天,你和ChatGPT聊天了吗?它仅仅开发13天就匆匆上线,却在两个月就获得过亿用户。这一基于AI的产品持续火热出圈,在社会各界引发越来越多的热情。以此为契机,业界对于人工智能技术也展开新讨论,特别是大模型的创建和学习能力成为关注的焦点。

AI技术变革:算法、算力、数据

目前,预训练技术(Pre-Trained Model)是人工智能研究的重要突破口。传统的研究方法中,标注成本一直是阻碍AI算法推向更大数据集合的障碍;预训练技术不依赖数据标注,就可以训练出一个大规模深度学习模型。全球AI团队选择儿童电视节目《芝麻街》中的木偶人物来命名各种新预训练算法,比如Elmo、Bert、Ernie等。

在对预训练模型的各种不同的技术评测中,算法性能展示了一个规律:数据规模越大、预训练模型参数越多,算法输出精度往往也越高。随着技术的突破,模型规模的不断增长,其展现出的能力潜力和丰富的应用场景激发了更多的企业和研究机构投身其中。超级模型除了可以消化更大规模的数据,也需要消耗更高的算力。

OpenAI公司对人工智能算法训练所消耗的算力做了一个统计,结果发现,从2012年到2020年,人工智能模型训练消耗的算力增长了三十万倍,平均每3.4个月翻一番,这超过了摩尔定律的每18个月翻番的增长速率,人工智能技术成为推动IT技术发展的新的动力引擎。

全球AI技术发展格局:中美领跑

从2019年开始,AI大模型突然爆发,参数规模以指数级的快速增长。从2014年到2018年,AI模型参数规模还在一亿的数量级上下浮动。

  • 2019年2月,OpenAI的GPT-2达到了15亿参数规模

  • 2020年6月,GPT-3达到了1750亿参数的规模

  • 2021年1月,谷歌大脑推出了1.6万亿参数规模超级模型,再次刷新规模记录

中国本土技术团队也加入到这一场人工智能技术竞赛中。阿里巴巴达摩院在2020年初启动中文多模态预训练模型M6项目,同年6月推出3亿参数的基础模型。2021年1月,模型参数规模到达百亿,已经成为世界上最大的中文多模态模型;2021年5月,具有万亿参数规模的模型正式投入使用,追上了谷歌的发展脚步;2020年10月,M6的参数规模扩展到10万亿,成为当时全球最大的AI预训练模型[1]。

不少中国企业和研究机构也积极研发投入中文预训练大模型项目。在人工智能超级大模型的这条数据、算法和算力三轮同时驱动的技术赛道上,中美两国技术团队已经形成了“两架马车”的发展模式,不断刷新人工智能能力规模上的边界线。

基于AMiner科技情报系统的数据[2],根据AIGC领域知识图谱(AIGC领域知识图谱及关键词参见附件1)进行检索,利用文献计量方法,我们对2012年到2021年期间全球发表的AIGC高质量论文(论文引用量排名前1%)做比较,共计1,646篇论文入选。在AIGC高质量论文领域,中国和美国数量几乎持平,并大幅度领先其他国家。

数据来源:AMiner科技情报平台

从发展趋势上看,在AIGC领域,中国有后来者居上、超越美国的趋势。

数据来源:AMiner科技情报平台

在更大的数字技术领域,中国在高价值论文部分,同发达国家仍有不小差距[3],未来需要产、学、研一起努力,共同推动中国数字技术向价值链高端跃升。

说明:论文检索时间范围为2012年1月至2021年12月

数据来源:AMiner科技情报平台

AI产业发展:资本与人才

深蓝打败了卡什帕罗夫、AlphaGo战胜了李世石……对于业内人士来说,这些曾经轰动一时的现象级技术进步,仅仅是完成固定任务的弱人工智能。开发具有跨领域学习能力的强人工智能技术才是人类努力的终极目标。常识学习、跨领域模型迁移、小样本和零样本学习……一个个技术的拦路虎挡在通往强人工智能的技术道路上,而人工智能超级模型给这条道路照亮了前方。

OpenAI为训练GPT-3超级模型投入了1200万美元的成本。在人工智能超级模型的赛道上,赛手需要掌握海量的数据、超大规模的人工智能计算平台以及掌握核心技术能力的算法团队,三者缺一不可。这也许侧面解释了在追求人工智能技术最前沿的赛道上,目前只出现了美国和中国技术团队的身影。中美两国在人工智能技术领域形成了激烈的竞争格局。数据、算法和算力是这一轮人工智能技术浪潮的三轮驱动引擎。中国拥有全世界最大的互联网和移动互联网用户规模,在数据领域让我国具有毋庸置疑的领先地位,互联网平台企业也构建出极具竞争力的算力平台和算法团队。

在斯坦福大学HAI研究所发布的2021 全球AI指数报告中[4],2020年全球尽管受新冠疫情拖累,在各方面的经济发展都受到极其负面的影响。人工智能领域的发展却一枝独秀,相关投资仍然在大幅增加,2020年私人资本在人工智能领域的投资比前一年增加了9.3%,远高于疫情前2019年5.7%的增长率。在资金方面,美国仍然是人工智能私人资本的最大目的地,2020年总投资超过230亿美元,是中国相关资金99亿美元的两倍多。

图表5 全球数字科技人才数量前 10 强机构

数据来源:AMiner科技情报平台。

近日发布的《2023全球数字科技发展研究――科技人才储备实力研究报告》[5],对包括AI在内的各国数字科技人才储备情况做了全面比较。结果显示,与美国相比,中国数字科技人才基数大,但存在高层次人才少、净流出数量多以及人才集中在高校而不是企业等问题,中国在巩固数字科技人才方面的工作任重道远。

ChatGPT的未来:脑力的解放

OpenAI公司应该也没有想到ChatGPT会一夜爆红,这款对话机器人(chatbot)产品不仅开发时间短,模型也没有构建在OpenAI即将发布的最新一代GPT4模型之上,而是采用了上一代的GPT3的增强模型[6]。

不过,从生成式AI技术(Generative AI或AIGC)的发展趋势来看,ChatGPT这一类现象级应用的横空出世与迅速爆红却并不意外。随着AI大模型技术的不断成熟,AIGC技术已经走出实验室,应用场景也已经从初始的文本生成发展到多模态领域:

  • 谷歌旗下的Deepmind公司推出了自主编程应用AlphaCode,在 Codeforces 举办的编程比赛中,超过了 45.7% 的人类参赛者[7]

  • OpenAI开发的另一款图片生成应用DALL・E-2,入选了时代杂志评选的2022年度最佳发明[8]

  • 英伟达开发了一款3D模型生成工具Magic3D,用户输入文本描述就可以自动生成结构极其复杂的3D模型[9]

  • 阿里巴巴达摩院多模态大模型M6,利用文本输入可以自动驱动人体3D模型的动作合成[10]

在图文创作、代码生成、3D模型设计、3D动画制作等领域,生成式AI技术展示着深厚的潜力,其应用边界也将随着技术的进步与成本的降低扩展到更多领域。

高科技投机机构方舟投资(ARK Invest)发布的报告[11]预测,以AIGC为代表的新一代人工智能技术将辅助知识工作者(包括教师、律师、医生、财务、程序员等白领职业)提高工作效率。报告预测,到 2030 年,AI 将大幅提高知识工作者的工作效率,平均工作效率增加140%,新一代人工智能技术将有可能大幅度降低脑力劳动者的工作强度。如果这一切成为现实,或将是继人类历史上由于动力革命而摆脱繁重的体力劳动之后,人类社会发生的又一次伟大的技术革命。

附件1. AIGC领域知识图谱及关键词

参考资料:

[1]ARK Invest's Big Ideas 2022https://www.zdnet.com/article/ark-invest-big-ideas-2022/

[2]J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. Arnetminer: Extraction and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and

[3]《2023全球数字科技发展研究报告――全球科研实力对比》,http://www.aliresearch.com/ch/information/informationdetails?articleCode=405942197876297728&type=%E6%96%B0%E9%97%BB

[4]https://arxiv.org/abs/2108.07258

[5]《2023全球数字科技发展研究――科技人才储备实力研究报告》,http://www.aliresearch.com/ch/information/informationdetails?articleCode=423423416457105408&type=%E6%96%B0%E9%97%BB

[6]https://www.nytimes.com/2023/02/03/technology/chatgpt-openai-artificial-intelligence.html

[7]Competition-Level Code Generation with AlphaCode, https://arxiv.org/abs/2203.07814

[8] https://time.com/best-inventions-2022/

[9] https://research.nvidia.com/labs/dir/magic3d/

[10]Pretrained Diffusion Models for Unified Human Motion Synthesis, https://ofa-sys.github.io/MoFusion/

[11]ARK Invest's Big Ideas 2022https://www.zdnet.com/article/ark-invest-big-ideas-2022/

苏中

阿里研究院资深技术专家

责编:斌卡(转载及媒体合作请评论区留言)