淘优惠

淘优惠

open ai人工智能 openai进化

热门文章 0

淘宝搜:【天降红包222】领超级红包,京东搜:【天降红包222】
淘宝互助,淘宝双11微信互助群关注公众号 【淘姐妹】


本文来自微信公众号:硅谷101 (ID:TheValley101),采访:泓君,文字:何源清,题图来自:《机器人总动员》

OpenAI,是一个人工智能研究的实验室,它是由非营利组织Open AI inc的母公司与一个盈利的子公司OpenAI LP组成。它的目标是实现通用人工智能,在实现这个目标的过程中,搞出了几个模型,一个是我们之前的播客讨论过的GPT-3,还有一个是最近带火“文字生成图片”的Dall・E・2。如果说Google搜索引擎开启了上一个周期的印钞机模式,下一代的巨头是不是像OpenAI和Stability这样的做AI底层模型的公司呢?

这轮由生成式AI主导的人工智能跟上一轮不太一样的地方是,上一轮AI很多靠to B的大公司获取收入,而AIGC的出现,不必像自动驾驶那样做到万无一失才可以应用,成立18个月的Jasper.AI就可以有9000万美元的收入。

AIGC是指Artificial Intelligence Generated Content,简单来说,就是用AI生成内容,比如AI生成图片、生成文字、生成代码、生成视频。本期节目,《硅谷101》邀请到了中国知名加速器AIGC负责人晋英杰Jack和大厂AIGC战略胡家康,来聊聊他们对于中国和美国AIGC创业格局现状的看法跟未来展望。

以下是部分访谈精选:

文生图火了,15倍超募?

《硅谷101》:AIGC方向特别火,有两家创业公司,它是连续两天都有新闻曝光,说他们拿了1亿美元的融资。一个是 Stable Diffusion 背后的母公司 Stability,它是拿了大概是 1.01 亿美元,它的估值现在是 10 亿美元。这家公司的创建时间也不太久。另外一个公司是叫做 Jasper.AI,它也是做 AIGC 这种文字内容生成的。他刚刚拿了 1.05 亿美元的融资,现在的估值是 15 亿美元。我们先讨论一下为什么说 AIGC 在这个时间点它这么火?

晋英杰:最近正好在学习 Stable Diffusion,创始人是 Emad Mostaque,是一个巴基斯坦裔,之前在伦敦求学,以前是一个对冲基金的经理。他预测未来 AI 是一个需要 Super Data(超级数据), Super Talent (超级人才)和超强的算力支撑的一个属于企业的一种资产。

就像Open AI、谷歌,它们会拥有这样的能力,所以他希望把这件事情做成一个开源的,让世界有平等 AI 能力的机构,有点像一个去中心化的 Foundation Model(基础模型)

去年年底DALL・E・2刚出现的时候 ,很多非 AI 背景的人开始关注到 AI 作画,但是AI 作画真正出圈或者疯狂火起来的时候,是在今年。 Stability 的 Stable Diffusion 推出来之后的一个月, AI 作画遍地开花。包括在 Photoshop 上出现的 AI 生成的功能。因为 Stable Diffusion,它是从模型的权重上就完全开源,所有人都可以自己做部署、二次开发。而今天我们看到很多大模型 Foundation Model(基础模型)是没有这样开源的。

开始的时候就像模型的推理时间,只能在 Nvidia GPU 上去做推理,可能需要 5 秒钟,但是现在不同的社区的成员的努力下,在 Stable Diffusion 里边可以把它压缩到 1.8 秒。也可以在 Apple 的 M1、M2,包括 Intel 的 CPU 上都可以去做推理。随着用户量的增加,他们开始做一些大企业的服务,包括获取更多这种数据。

这个增长速度是非常可怕的。这一轮他们据我了解获得了 15 倍的一个 Oversubscribe(超额订阅),对外估值讲的是 10 亿美元,但有人开到了 40 亿美元的 Offer,还没有进去。

《硅谷101》:为什么只融 1 亿呢?我不知道它们的模型是不是自己研究的,因为像这种大模型,它背后靠的是堆算力,是需要很大的成本去铺算力资源的。因为我今天还在跟人聊,有人会觉得这是一个资金密集型行业,那它为什么只拿 1 亿美元呢?

晋英杰:好问题。他们整个团队是相当扁平的,团队百人的人数里边也只有一个PhD ,他们的 Stable Diffusion Model 是跟慕尼黑大学的一个实验室做出来的,包括今天也跟 Midjourney 这款非常火的文生图的产品开发者一块研究。因为它是开源的,所以它会跟大量的机构去合作,去堆这样的模型。

Emad 他自己是放了很多钱进去的。Stability 背后是有 4000 张 A100 的算力,他们算力是非常够的。而从学术研究的角度,他们会跟一些机构去合作,推一些开源的模型,所以这个阶段可能还不需要那么多的钱。但是我猜明年估值应该还能翻 10 倍,那个时候可能会融再 10 倍的钱了。

《硅谷101》:MidJourney的火爆,除了 Stable Diffusion,跟DALL・E・2 整个 API 接口的全面开放是不是也有关系呢?

胡家康:对,我觉得是很有关系的。包括刚才晋英杰Jack也说过,大概是 Stable Diffusion 在七八月火的时候,9月份我们可以看到国内市场是已经出现了一大批创业公司,这些创业公司做的文字生成图片的应用基本上都是基于 Stable Diffusion 做的。所以看到它的开放能够驱动整个应用层的生态繁荣的增长,并且会驱动很多创新的应用出现。

比如 DALL・E・2 推出的那一段时间,我们看到的文生图的一些创意应用还比较少,但是在八九月份以来,我们看到了文生图可以用在很多不同的场景,这也激发了非常多的想象力。而且我相信从第四季度开始,我们会看到更多创新的应用形态出来。

为什么长不出中国的OpenAI?

晋英杰:从你们角度,为什么你们没有去做一个千亿的模型,你们去怎么看这一点投入和产出?

胡家康:清华有一个团队叫面壁智能,出过一个大模型参数的榜单:显示了随着不同时间段、不同公司发了哪些大模型,他们的参数规模是怎样的,其基于他们数据去做分析,可以看到几个很明显的趋势:

第一,一个确实是大模型的参数达到了 5000 多亿参数量级之后,大家都没有再往上突了。今年 22 年的时候,新发的一些大模型,要么就是在千亿左右参数的规模,要么就是可能针对某个细分场景做了一些的优化,要么更强调跨模态,比如游戏、强化学习、图等等。为什么会有这个现象?我个人理解,去提高参数的边际收益其实已经相对没有那么大了,因为你想一下,从千亿参数提到万亿参数,你所需要的算力规模的量其实是会比 10 倍量要需求更高的是。不是你对 10 倍的机器就能够训出 10 倍参数的模型,效果的提升其实是没有相应的那么显著了,这是生成类任务。

第二,像 NLP 还有一类典型的任务是理解类任务,比如去做文本的分类,信息的抽取等等的。这类任务我们看到从百亿到千亿去跨越的时候,其实它的边际效果的提升已经不太多了。所以我们真正去做产业应用的时候,到底是不是必须要用一个非常大参数的模型,目前其实是打一个问号的。

从下半年开始,一些新的机构加入这些战场了,也可以说明这个领域确实是两个特性:一是我们肯定是不需要太多家的基础设施;第二,它是一个资金密集型的特性,并且它有比较强的规模效应,所以你在已经那么卷的阶段,你再去新切入市场,其实价值已经相应没那么大了。

《硅谷101》:根据你刚刚的榜单,中国大模型参数训练最多的是哪一家?

胡家康:根据公开资料的披露,目前中国厂商推出的大模型参数量最大的是阿里的 M6 大模型,达到了万亿级别,但是它的万亿级别背后对应的其实是用了一种稀疏化的模型的方式,很容易把参数堆上去,你可以理解为它的数字会比 GPT-3 的千亿模型有虚高的成分存在。

其次就是一批千亿模型,包括智源、清华的几个实验室、百度文心、华为的盘古大模型,也达到了千亿的规模。去做生成类任务,其实千亿是一个门槛。

《硅谷101》:在中国做到千亿模型,它大概花的比如服务器、显卡的这些算力成本,大概是在一个什么样的量级?

胡家康:可能我们公司的数据不太好说,但是肯定是起码得上千张卡的规模。

《硅谷101》:智源的模型跟百度的模型,他们的效果最后怎么样?

胡家康:这一类做文本生成的大模型,在中文领域的效果都是远远不及 GPT-3 的。背后可能有很多原因:

第一,本身对中文的理解和对英文的理解、生成,是两个体系,中文的难度是更大;

第二,不管是 OpenAI还是Stability,他们都有一种更加创新与灵活的组织形式,其实是聚集了一种开放、利益互享的方式,聚集了一批顶尖的科学家一起去做贡献,但是国内目前这个模式可能还没有一个很成功的案例出来。对方相当于是以那种很小的杠杆可以撬动巨大的力量,但是国内可能还是依靠于各个大厂大型公司,自己的科研人员去做这个事情,再对比下来,难度还是有一点大的。

第三,还是在资源的投入上有区别。虽然国内的公司也投入了很大的资源在做这个事情,但是相比海外,比如 Stability 4000 张 A100 这样一个量级的投入,作为一个国内的大型公司,它很难去把这个故事给讲圆的。

第四, GPT-3 在 2020 年推出之后,较快地形成了一个创业生态,一大堆产品去用它的 API 去得到用户的反馈来优化模型。这个事情在国内其实目前以文本生成角度来说,还没有形成一个可以和国外相媲美的应用生态。所以对于做技术的人来说,反馈和优化的空间也会相对的少一些,所以在这种技术迭代的加速度上,会比国外相对的落后一些。现在有很多的创业者进来,各类科技公司去提供很好的基础设施,在这种正循环的促进下,有希望在明年看到国内能够做起来类似海外的这样一个应用生态。

《硅谷101》:Jack 你要不要给大家介绍一下为什么同样大家都是一个千亿级参数的训练量,Open AI 它能把这事给做成了。为什么它能够吸引到整个行业比较顶级的科学家?

晋英杰:目前我看到了一个信息, OpenAI 能否在中国发展出来,或者是一家 AGI(通用人工智能)公司能否在中国发展出来,影响这件事情的要素在我看来会有三个:

第一个是人才的密度、高度;

第二个是资本的 goodwill(加持)

第三个是背后政策的支持。

从 2020 年开始,我开始寻找中国有能力做 OpenAI 的人。先去拜访了一些老师,包括藤校的教授,大厂的大模型的一把手等等。但是会发现中国 AI 地位比较高的老师,也可能是我认知浅薄,感觉他们都有一点 怀疑的, OpenAI 300个人大部分都不是CS(计算机科学)的博士。中国在各个领域学术人才的交叉的密度可能还不太够, Openness(开放程度)还不太够。

比如像 OpenAI 的创始人Sam Altman,还有他合伙人Ilya Sutskever,他们都是 30 多岁,顶尖聪明的年轻人。在中国有这样视野的年轻人,至少我遇到的还是蛮少的,可能人才上还是要比美国落后 3-5 年。

另外一方面,从开放性 上,刚才我们提到 5000 亿和 1000 亿,为什么没有人再去堆 1 万亿了?刚才家康提到特别好的一点,你成本是非线性的,每个 GPU 之间的一个通讯成本会大幅度增加。怎么去解这一点?或者从第一性原理上,它应该是什么样的?我们人脑有 860 亿个神经元,有 1.7 万亿左右的连结。1.7 万亿对应我们模型的一个参数量,也就是 GPT-3 做了一个参数量是人脑 1/10 倍的模型。

如果我们真的想对标人脑的这种链接能力,没准我们还真的需要一个 1.7 万亿参数的模型,你不光是需要从数据、算法层面去做革新,你还需要从硬件方面去做革新。怎么让 GPU 之间打破这样冯诺伊曼架构的墙壁,需要脑架构,或者认知科学,或者脑神经科学相关的一些科学家跟模型的科学家老师联合跨组,在大厂里面直接是跨部门的一种合作了。这方面看到的还是相对少一些的。

在 OpenAI 里边就 300 个人,来自各种各样的一些领域,化学的、生命科学的、物理学的、数学的,有顶尖的 CEO 和科学家去带领着,都很年轻,里边分成很多组,这些组不单单是都去冲 AIGC 的,对于他们这件事情来说,风险是其实极高的,它落地的收益又是相对少的。

做 OpenAI 这家公司,美国有一部分资本是有耐心的,微软给了他们资金。国内很少有机构愿意去赌,一个团队两年的时间,什么商业化的东西都没做出来,就做了一篇论文。但是这家机构就是为了 AGI(通用人工智能)一路走到黑。Deepmind 和 OpenAI都是这样的一个气质。国内就会比如我要求你半年给我产生点东西,有一个什么模型之后,我就立刻需要落地的一个营收回报来证明这件事情有价值。

《硅谷101》:马斯克当时说:你应该担心人工智能的安全问题,因为它比朝鲜问题还要危险。他是怕人工智能作恶的这样的一个初心。最开始 OpenAI,它在解决一个什么问题?它想做通用人工智能。

所谓的通用人工智能就是人工智能在所有的领域都可以做得比人好,或者至少跟人能达到一样的治理水准。关于这样的一个愿景,在业界跟学界,包括一直到今天是有非常多的争议的。就像我知道有很多的教授,到现在都觉得通用人工智能的这种提法是有问题的,甚至有很多人就直接觉得马斯克要做这件事情,是因为他不懂AI,包括扎克伯格也是这样怼过的。所以马斯克懂不懂 AI 我们不知道。我们可能会专门花一期的时间去讨论这件事情。

生成式AI:可生万物

《硅谷101》:AIGC有很多 To B 的应用,To C 也很有想象力,很有想象力。还有一个特别小众的领域的应用,之前的一位嘉宾Howie提到,有一个考古学的教授发现AIGC在考古学里面太有用了。因为考古的场景,其实是一个不太清晰的发掘现场。但是他其实很需要根据现场去还原成一个清晰的、有过往想象力的东西,他发现用 Dall・E・2 的模型,就能更好地去帮他们看考古当时的场景是怎么样的,我还挺没有想到的。

晋英杰:有意思,不只是如此,Sam Altman 就聊到 AI 有可能的三个很关键的任务:

第一个是做科学家的工具,比如像AlphaFold;

第二个是解决每一个人日常的一些需求,比如 AI coding,做编程;

第三个就是 AI 自己演化成一个科学家。

艺术在我们看来是非常难的一件事情,但是 AI 做得很好;做一个科学家也是很难的事情,有可能 AI 也可以做好。我们今天去解决一些复杂的问题,比如阿尔兹海默综合征,我们如果有足够的数据的情况下,我会把它拆成一个个的子问题,在不同的学科里边寻找答案。每个科学家都会有一个自己的实验记录本,记录我可能为什么这里用的公式,那里边用了这样的一个物理学的原理,直到我们解开这样一个科学的谜题。

《硅谷101》:刚刚你们提到的, AI 可以去赋能科学家这件事情,它到底是 AI 还是AIGC?因为比如AI,它可以参与到制药,它可以去探索蛋白质的结构,是就 AlphaFold 做的那些事情,它是 AI 做的,它跟 AIGC 有没有关系?

晋英杰:我们今天话题虽然是 AIGC,但是红杉那篇文章的标题是 Generative AI: A Creative New World。它不单单是生成内容,后边的东西可以是万物。取决于你把什么样的模态放进去,你今天放代码,我就生代码;你今天放蛋白质三维结构,我就生蛋白质;你要是放科学推理,我就给你直接变成科学家。还是挺有意思的,我们可以往这一块去讨论。

《硅谷101》:所以 AI 不仅仅可以生成文字、图片、视频,它也可以生成代码或者万物,就看我们

open ai 技术原理 open ai 首席科学家


你好,我是王煜全,这里是王煜全要闻评论。

眼下要谈什么东西最火,ChatGPT肯定当仁不让,是国内外都避不开的热点,我的朋友圈、新闻列表每天都离不开它的身影。

这款AI应用诞生2个月用户就破亿,创下了用户增长速度的新纪录,基于这款AI的各种新尝试、新创业也层出不穷,医疗、法律、券商、编程,好像每个行业都在研究怎么使用这个新东西。

除此之外,我还注意到一个有趣的现象,产品大火之后OpenAI公司的创始人Sam Altman也成为了媒体宠儿,各种故事越传越神。

从最开始比较客观的生平简介,这几天已经快进到“造神”阶段了,“Sam Altman的成功学”“Sam Altman关于成功的13条建议”到处被转发,似乎又是一个硅谷天才缔造商业帝国的传奇故事即将诞生。

不少人都在感叹,为什么别人家的孩子就这么有出息。

我今天就来和大家一起破除下“成功者光环”,看看真正的Sam Altman是什么样的,也正好回答一下,最近业内不少人都在讨论的话题:“同样处在AI技术早期,为什么OpenAI出现在美国?”

今天聊到Sam Altman,大部分媒体都会提到他19岁从斯坦福辍学创业,公司估值一度达到1.7亿美元,28岁成为知名创业孵化器YC的总裁,34岁放弃总裁身份全职投身OpenAI的创业之旅。

这一路简直就是标准的传统硅谷故事模版―「名校辍学生的成功之路」。

但你要是细看他一路的经历,很多事情可能就没有你想象的这么美好了,充满了叛逆和争议,绝对不是个“好孩子”。

Sam Altman 19岁创立的Loopt主打产品是社交网络应用,这家公司坚持7年之后,用户最多时也只有5万人,烧完了所有钱后只能在2012年低价出售、关闭运营,所谓的第一段创业史并没有大家想象中的成功,而且争议也不少。

在2011年,Altman已经成为YC兼职合伙人,有一次他公开分享创业经验,谈到了一个非常出格的例子:他们的一位大客户就要被竞争对手挖走,他为了挽留客户邀请对方参观自己的公司,但整个公司只有5个人,该怎么办呢?

他的办法是雇了一批大学同学,上了一天班撑门面,最后他靠着这个阵仗拿下了订单。

如果说这还能算是创业时期的小伎俩,那他在YC时做的另一件事很多人可能就不太能接受了。他那时用Loopt挣到的钱创立了自己的投资基金Hydrazine Capital,75%的钱跟投了YC投资的企业,相当于利用YC的资源和自己的判断做了个精选基金。

这个基金4年时间规模增长了10倍,被认为是他财富自由的主要原因。

这事放到大部分投资公司肯定都会被扫地出门,但架不住YC创始人保罗・格雷厄姆非常欣赏他的出格,第一次见到他就称自己看到了19岁的比尔・盖茨,后来甚至把YC总裁的位置交给了他。

有人认为这一切是因为他拥有非常优秀的商业天才,甚至到了操纵人心,能达成任何交易的地步,大家开玩笑说即使Altman被扔到了食人族部落,5年之后他也会成为当地的国王。

在我看来,成就这一切的其实并非Altman个人的天才,而是对这些出格特质足够包容的文化环境。

很多人和媒体谈到「创新者」,只会历数他们推出了哪些新技术、新产品、新服务,往往都会忽略「创新者」们打破既有的条条框框,超越当下的认知和共识,那些非常出格、离经叛道的一面。

有名的创新者都不乏这种特质,创立微软的比尔・盖茨为了找新鲜感,特意超速被捕;成就苹果的乔布斯脾气暴躁,对自己的前女友非常糟糕;今天同样知名的马斯克,我之前也和大家谈过他的“暴君”行径。

毕竟创新就是百无禁忌、创新就会打破规则,没有一些出格的特质确实很难做出真正的创新,如果没有一个包容的氛围,这些特质根本没机会发挥。

当大家都在关注OpenAI的技术,关心OpenAI的创始人如何牛时,我想说的是:如果我们真的希望自己能引领未来的创新风潮,在新的AI热潮中后来居上,就必须看到创新者的两面性,不光要能欣赏他们的光芒四射,也要能包容他们的离经叛道,给他们营造一个适合发挥的舞台。

好在,中国几次创业创新的热潮证明,我们能营造出这样的环境和氛围,也能包容下很多看似出格的行径。

希望未来也能继续营造这样宽容的氛围,让创新者有机会探索未知、带来突破。



open ai注册成功可以无限使用吗 open ai注册要手机号怎么办


openai不支持国内手机号注册,但是可以通过代理和国外虚拟手机号接码平台来接受验证码,接码平台地址:https://sms-activate.org/cn

第一步 准备接码打开接码平台 sms-activate.org,注册一个账号充值,这里单位是卢布

接码OpenAi的一次费用是大概30卢布,人民币来看差不多是3块钱,不过只能充美金,充值0.5美元即可,支持支付宝等国内APP。充值完成需要等一会,就先放着,直接进行下一步。第二步骤 注册OpenAI账号

首先是打开ChatGPT的账户注册页面。谷歌注册或者邮箱注册都可以,无所谓,这里用邮箱注册作为例子。

用邮箱注册后有个验证邮件,进去邮箱,点开链接。现在开始一步步走就行了。当然,有一些人会在这里遇到一个问题,会出现提示说不能在当前国家服务: Not available OpenAI's services are not available in your country.出现这种问题,就是因为你的代理没有全局,或者位置不对。香港的代理是100%无法通过的。但是又有个非常神奇的问题,只要你出现了这个提示,那么你接下来怎么切换代理,都是没用的。现在教你一招解决。解决地区问题

首先,你要把你的代理切换到不是香港的地区,我这里选韩国。然后,先复制下面这段代码window.localStorage.removeItem(Object.keys(window.localStorage).find(i=>i.startsWith('@@auth0spajs')))

接着在地址栏里输入

BfwJavascript

注意,这里一定要输入,因为你复制的话是粘贴不了的。然后再粘贴我们第一段复制的内容

然后按下回车键,接着刷新页面,如果你的代理没问题,就可以正常看到注册页面了。填写手机号然后到我们的接码网站上去。在左侧搜索OpenAi,然后选择巴西。点击小黄车购买。

然后我们复制这个号码,粘贴过去。然后我们点击发送验证码就完事了。等一会网站会提示验证码,我们复制粘贴。这样就成功了,随便点一个进去完事。