淘优惠

淘优惠

OpenAI的人工智能能通过文字判断情绪,自学的!

热门文章 0

淘宝搜:【天降红包222】领超级红包,京东搜:【天降红包222】
淘宝互助,淘宝双11微信互助群关注公众号 【淘姐妹】

人工智能识别情绪的方法,人工智能识别情绪,人工智能情绪识别的应用

【AI世代编者按】大部分当代人工智能依赖机器学习技术:在通过特定数据集进行学习后,机器能自动对输入信息作出反馈。从某种意义上来说,机器学习算法利用预设值去预测结果。然而,OpenAI的研究人员发现了不同寻常的状况。

OpenAI此前开发了一种机器学习系统,用于预测亚马逊网站评论文字中的下一字符。研究人员发现,这一人工智能进一步发展成为了无监督系统,学会了情绪的表示。

OpenAI在博客中表示:“我们的模型学会了一种判断功能。通过简单地预测亚马逊网站评论中的下一字符,这一模型发现了情绪的概念。这令我们非常惊讶。”OpenAI是一家非营利组织,投资人包括伊隆・马斯克(Elon Musk)、彼得・蒂尔(Peter Thiel)及萨姆・阿尔特曼(Sam Altman)。OpenAI的神经网络模型能自我训练,通过对评论内容是否正面进行归纳来分析情绪,并按照需要的情绪来生成文字。

这一基于mLSTM技术的人工智能系统接受了为期1个月的训练,训练中4096个学习单元利用了亚马逊网站的8200万条评论。在训练之后,研究人员通过对这些学习单元的线性合并将模型变为了情绪归纳工具。当这一模型只启用少数学习单元时,研究人员发现了单个“情绪神经元”的出现,能对其情绪值进行准确的预测。

这一人工智能的情绪分析能力超过了“斯坦福情绪树图资料库”使用的所有其他方式。“斯坦福情绪树图资料库”是一个被广泛研究的情绪分析数据集。这一人工智能的准确率高达91.8%,超过此前的最高纪录90.2%。

对机器学习研究员来说,无监督学习算法是最终梦想。这种人工智能可以自主学习,而不再需要人工输入带标签数据。OpenAI的mLSTM人工智能实现了这一目标。不过,其开发者已经注意到,这可能并不是唯一一种有能力进行无监督学习的机器。

无监督学习能力将给人工智能带来巨大的提升:减少所需的训练时间,同时优化训练效果。例如,通过分析甚至预测用户需求,这样的人工智能可以提供训练有素的虚拟助手。不过,所有这类设想中的应用仍需要对无监督学习的进一步研究。

OpenAI的研究人员表示:“我们的研究结果是向通用无监督表示学习发展过程中充满前景的一步。不过,底层的现象仍然很神秘,机制远远没有弄清。”(编译/陈桦)

下一篇

OpenAI称ChatGPT应受监管:ChatGPT或被坏人利用

openai可以做什么,open怎么叫,openai中文,openai官网

原标题:OpenAI称ChatGPT应受监管:ChatGPT或被坏人利用

鞭牛士 2月6日消息,据网易科技报道,人工智能研究公司OpenAI首席技术官米拉?穆拉蒂示,ChatGPT可能会“编造事实”,这与其他基于语言模型的人工智能工具没有什么区别一样。

当被问及像OpenAI这样的公司等机构是否有责任监管这一工具时,穆拉蒂说:“对OpenAI等公司来说,最重要的是以一种可控和负责任的方式将其引入公共意识。”但她强调,公司还需要来自监管机构、政府甚至所有人的帮助。穆拉蒂补充说,现在对ChatGPT进行监管“并不算为时过早”。返回搜狐,查看更多

责任编辑:


Open AI概念 中国有openai这样的公司吗


这不是AI第一次引起热议,早在AlphaGo打败人类棋手的时候,行业就开启过一波“AI是否会取代人类”的恐慌性讨论,但在随后的几年,AI并没有跳出人类对它的一贯认知。直到2022年,这次,AI不但可以和人类流畅地聊天;可以迅速回答人类需要十几分钟才能回答的答案;能迅速检索人类可能几小时才能收集的资料;更能创作出让艺术家赞叹的有“创造力”的绘画。

人工智能公司OpenAI是这场热议中的焦点,它的CEO Sam Altman说:“十年前的传统观点认为,人工智能首先会影响体力劳动,然后是认知劳动,再然后,也许有一天可以做创造性工作。现在看起来,它会以相反的顺序进行。”ChatGPT的上线,颠覆了人类对AI“侵占”人类世界的认知。这场始于硅谷的AI宏大叙事,由于低门槛的参与性,迅速闯入普通人的生活。ChatGPT自2022年11月上线以来,人工智能公司Open AI的估值已经高达290亿美元。科技巨头如临大敌、AI创业公司摩拳擦掌、普通人在与AI的聊天中,玩的不亦乐乎。

同时,一系列问题也被带到了人们的面前:

● 生成式AI技术,是否会带来一场堪比移动互联网的新商业浪潮?

● 这是否会给目前的商业格局带来巨大的改变?

● 生成式AI赛道,到底有哪些商业模式可以挖掘?

● 中国的头部科技企业,抓住这场新的AI浪潮了吗?

● 高端芯片被限,中国还有可能发展自己的AI大模型吗?

腾讯科技对话全球科技创新产业专家、科技投资人,海银资本创始合伙人王煜全,根据他常年对全球科技产业的观察及亲身实践,尝试回答以上难解的问题。这些问题不会有标准答案,但是我们希望能从行业深度参与者的多角度观察中,给关注“生成式AI”的读者,带来一些启发。

01

AI生成,必定引起科技巨头的重视

Q1:生成式AI为何引起科技巨头的关注?

王煜全:第一,AI绘画、ChatGPT等应用的出现,让越来越多的普通用户可以使用人工智能。美国经济学家Diego Comin表明一个经济体的强弱不取决于它引入先进科技的速度,而是取决于使用先进科技的深度。

比如互联网,不发达国家引入互联网的速度很快,但是引入互联网后使用比例低。科技之所以能推动社会发展,是因为科技能被广泛使用,广泛地提升效率或者带来新的能力如果只是有少数人使用,它提升效率或者带来新的能力会很小。所以OpenAI在商业上讨论的热度是晚于用户所讨论的热度,这是比较少见的,所以后来人工智能话题火热,是顺理成章,水到渠成的。

第二、生成式AI类应用给未来带来巨大的想象空间。我认为生成式AI还有很多模式创新的空间,远没有达到最高点。虽然现在已经有人探索了AIGC的某些使用模式,但这远不是终点。特别像当年的互联网,从最早的门户网站到网游,再到电商,再到如今短视频的爆火,一直在迭代发展。

全球首例AIGC技术辅助商业化动画片《犬与少年》,动画场景由AI绘制

而OpenAI的技术依靠自己设计的模式就能够做出更多的应用,甚至说做出更大更成功的创业公司,这就是有想象空间。

之前的人工智能创业公司和创始人都是人工智能专家,现在有了AIGC、Chat GPT,我们可能逐渐会发现,很多人工智能创业公司的创始人可以不是技术专家。他可以先有一个idea,然后再去找某位CTO帮他实现,而且CTO也比较好找,因为有了这些基础技术,帮他实现并不难。这时候人工智能领域的创业就会变的活跃,也就是所谓的万众创新。这也是它被热议的原因之一,人们会认为这件事离“我”很近,除了能够日常使用以外,更主要是也许“我”就能创业,这其实降低了创新门槛,让更多人能够参与,会使得科技创新能够加快市场渗透,能够使创新的价值被凸显出来,这都是特别有意义的。

Q2:如何看待老牌科技巨头微软和OpenAI的合作?

王煜全:第一,降低算力支出:对Open AI来说,算力是很大的成本,因此,它选择和微软合作可以大幅降低算力支出;第二,未来云计算、人工智能、大数据将会深度结合,而大量的人工智能应用是基于云进行部署,算力也由云来提供。OpenAI想要合作肯定会考虑选择三朵云(谷歌云、亚马逊云、微软云)的其中一朵,最后和谁合作?第一肯定是选择合作愿望最强烈的,之前微软就投资了Open AI,也表明了合作的意愿。

第三,从未来发展看,三朵云中亚马逊云的客户种类比较单一,主要针对电商客户,而谷歌在开拓商业客户上做的不够好,虽然谷歌的DeepMind在人工智能领域的研究非常深入,但商业化落地并不出色。微软是商业化做的最好的,且有大量的企业客户,如今微软能在“三朵云”中实现后来居上,就在于大量的企业客户上云。这对OpenAI来说也很重要,产品和服务能让客户最终使用和买单才是关键,能有大量用户使用,进而开拓市场,才是双赢。

我们也看到,OpenAI与微软的合作不排他。OpenAI的开放API,意味着创业者只要有Idea,就可以去做相关的创作工作,对微软来说这也是非常大的突破。回顾微软的发展历程,它并没有最早进入互联网行业,但是依靠全面网络化又追上了其他互联网企业的脚步。在这波人工智能浪潮中,微软也比谷歌云和亚马逊云都稍慢,但现在依旧又追上前者的步伐。现在在三朵云中,微软隐隐有胜出的趋势,原因也很直接,就是在应用的上的结合更好。亚马逊最早,谷歌的技术能力最强,但是它们在与应用结合上都没有微软做的那么出色。OpenAI整合进其他应用将是必然趋势,把更多的人工智能与其他应用结合,让更多的人享受到人工智能带来的便利,让更多有创意的人参与其中,整个市场才会更加活跃,所以从应用上讲这是极大的拓展。

另一方面微软也很聪明,它向OpenAI追加投入100亿美元投资,但是这些投资需要OpenAI在合作后,如果盈利首先给微软分红偿还投资并置换部分股权,如果OpenAI没赚钱,那微软仅仅是占有原有股份,不需要创业者赔付。这是一种双赢的设计。

02

现在的生成式AI,

有点像互联网的瀛海威时代

Q3:在生成式AI领域,有没有观察到逐渐清晰的商业模式?

王煜全:有些苗头。现在有点像当年互联网刚热起来的时候,当时有家公司叫做瀛海威,可以说是“启蒙”了中国老百姓的网络意识,许多人伴随着瀛海威走进互联网世界。但瀛海威和门户就差一步,门户的实际商业影响比瀛海威高很多。现在有点处于中间阶段,人们所看到的还是BBS,至少还没到门户阶段,这就意味着可能有非常大的新模式,在今明年两年出现。

我们对原理的总结,未来最大的模式应该不是叫“AIGC”而是叫“AIGS”,因为C(Content)是有局限性的,即使AIGC的能力再强大,从C的角度来讲,可能同一组关键词,出来的C是类似的,并不能满足人们的个性化需求。而真正最大的价值是能够将它变成一种服务(Service),想要什么定制什么,这样人人得到的东西都不一样,人人的需求都能被个性化地满足,这也符合我们所讲的服务规模化时代的到来,这里的规模化服务,指的是“人工智能的服务”(而不是人的服务)。因为人工智可以复制“服务规模化的个性化”。

高端服务的特点就是个性化,首先是“我”为“你”定制,所以叫高端,而且要有设计,内容要呈现一定的复杂度。就像ChatGPT与你的互动,像ChatGPT写出文章,它都有足够的复杂度,足够懂你。

比如,2022年11月28日,26岁的纽约华人艺术家米歇尔·黄(Michelle Huang)的推特小火了一把。她把自己10年的日记上传给了GPT-3,训练出来了一个小米歇尔的AI分身,并将她们之间的聊天截图放到了推特上,消息一发布就引发了不小的关注,一周内点赞已经超过5.1万次。聊天内容非常治愈,米歇尔·黄形容这段经历就像一面镜子,帮她找回了很多自己身上没有改变的东西,也让她发现了很多已经遗失的地方。这就像真正的知己,理论上讲知己可以自我疗愈,当“我”有什么问题、委屈、困难,知己比我还了解自己,那未来这种“数字分身”可能变成一种服务,而且它的特点是“你”用个人的数据去喂养它,就能形成对你个人的深度理解。

用户在这个时代需要的永远不是产品而是服务,需要的是规模化的服务,因为有人工智能、有机器人,企业的规模化服务能力能够做到个性化,用“我”的能力来解决“你”的需求:如何能够个性化地和顾客互动,如何能在这个性化互动过程中提供高端的服务,可能在未来生成式AI领域商业潜力巨大。

Q4:生成式AI的应用探索主要还是集中于“科技圈”及有专业技术的人员,是否意味着普及门槛依然比较高?

王煜全:我认为不是技术门槛的问题。凡事总有过程,技术人员本身离新技术较近。20年以前,硅谷的一个很著名的营销专家Jeffrey Moore,提出了“跨越裂谷理论(Crossing the Chasm)”,他把市场中的人分成五类,最领先的一类人叫创新者(Innovator);另外一类是早期采用者(Early Adapter),他们特别愿意应用新产品,使用新产品,这两类人就是高科技产品的第一批用户。

这两类人对于新事物会立即使用,可能这时候产品体验有很大瑕疵,但是他们不会害怕使用,看中的是新功能、新能力。所以很多高科技产品一上来就有一个高速的市场增长,是因为这批用户。

但是后面的主流用户分成早期主流、晚期主流和拖后腿的用户,后面三类用户和前面这两类用户的行为习惯很不一样,他不会因为你的新功能就去使用你,而是会看我的使用体验是不是得到满足,是不是很舒服。如何让主流人群用上“ 你”的应用,这是最主要的。有些高科技公司,在获得第一波高速增长的时候就扩产,实际上还没获得主流人群的认可,这时候扩产,实际上就加速了企业的财务问题,甚至企业可能破产。

所以说好的CEO,往往都是Early Adopter(早期采用者)。他不一定是创新者,例如马云不是创新者,互联网不是他发明的,但是他是早期采用者,他知道互联网的优势就是“你”能在网上做电商,但他也知道互联网的劣势是电商没信用证明,所以后来他创办了淘宝,通过淘宝先学习eBay模式,在实践过程中发现eBay没有解决的诚信问题。为了解决诚信问题引入支付宝,将平台作为第三方中间人,等到买方确认以后再付款,这一模式便解决了诚信问题。

所以阿里巴巴后来的成功不是因为它的技术多么领先,而是因为它在技术应用中解决了应用痛点,这是很正常的现象。大多数人为什么不是“马云”,因为最早接触技术的人往往是技术人员,而大多数技术人员只会使用技术,不知道如何解决问题,把有问题的技术变成普及的技术。

什么人能做这件事?是非技术的使用者。当他们不能通过技术去解决自己的问题时,只好想办法解决,那时候“你”能解决这个问题,它就有了普及性,所以当使用者说因为OpenAI的技术还不是特别的大众化,所以热议的第一批人一定是技术专家,但现在已经有了大众化的苗头,因为很多热议的人已经不是技术专家。

所以OpenAI的ChatGPT已经对公众将门槛降到非常低,这时候公众再不使用,就不是因为有门槛的问题,而是因为大多数公众不知道紧跟前沿科技,不知道做早期采用者,不知道要实时去体验使用,只觉得这离“我”很远,因为科技在普通人眼中,很容易下意识认为“搞不懂”,这其实不是真的搞不懂,而是理念问题、心态问题。

这个问题会逐渐得到扭转,当有成功案例产生,当大众看见应用可以这样使用的实际例子,当非技术人员也能玩转科技,便会有更广泛的群体参与进来,所以至少我现在认为已经不是技术门槛的原因。

03

有些专家纠结ChatGPT“是否有技术突破”其实暴露了无知

Q5: AIGC、Chat GPT、AlphaFold,经常被放在一起谈论,他们是否可以被划为同大类的创业方向,能否被称作“AI+”?

王煜全:我认为可以。它们都是将AI的能力进行输出,当然AI也有N种能力,可以文字输出,可以图片输出,可以音乐输出,也可以做内容修改、内容优化,所以在生成式AI的技术浪潮下,会有各种各样的新功能出现,这些功能都会被当成一种能力提供出来。

任何的新的技术突破以后,都要有一轮模式创新,使得技术突破的优势能够被发挥,但模式创新的前提是要解决“技术容易被得到”的问题,所以现在我认为OpenAI做的特别好。但AlphaFold以及其他类似的,坦白讲我认为它们确实有欠缺。

OpenAI需要和微软谈合作才能用它的云,但Google本身有云,从这方面来讲,Deepmind的先天优势是更大的,而且它也有先进的科研成果。但是能让普通用户广泛调用的应用基本没有,即使出现了当年下围棋的AlphaGo,但许多人并没看到DeepMind在普及中做出贡献,所以这波生成式AI的热潮,我认为核心就是看到人工智能的某些功能有新的突破。剩下的工作就是如何让功能被广泛使用,带动应用的大范围普及。

Q6:有专家认为ChatGPT、GPT-3没有技术创新,底层的依旧是Transformer语言模型,如何看待这种观点?

王煜全:互联网刚开始火热时,也有人认为互联网不是技术创新,最早的技术创新是Tim Berners-Lee(蒂姆·伯纳斯·李,世界互联网发明者),将互联网贡献给大众使用。对公众来说纠结技术创新意义不大,关键是使用。当然对这件事的讨论是有意义的,为什么?我们要理解什么是技术创新,因为我们强调创新要端到端,从实验室研发出来最后要被公众广泛使用,真正好的创新不是你能够向大众示范多么酷炫而是能够被广泛使用。

很多好的技术都是在专利已经过期,没有什么新技术发明突破的情况之下,有人找出应用痛点、解决应用痛点后从而形成普及。比如说,特斯拉有什么技术突破?锂电池不是它发明的,电池组管理很多时候并不是技术,我们可以发现特斯拉赢在制造上,批量制造依然能够保持便宜的价格、很好的产品体验。但制造能够提升也是一种“技术”。所以不能片面理解“专利”才是技术,“应用创新”也是人类经验知识的积累,“不能专利化”的经验积累从一定意义上讲更重要。大多数创新的普及,发明人是一批,推向市场的是另一批人,这是产业界的常态。

如果非要纠结“是不是真的有技术突破”,那么科技创新的过程都应该归科研人员来完成,但实际上科研人员根本不擅长将科技创新推广到社会。他们擅长做新的东西,但是新的东西要被社会接受,要Early Adopter(早期采用者)去发现,在使用当中发现痛点问题,然后去解决。新技术出现,原理突破是Innovator(创新者)做的事,就如同当年锂电池出现,它装车续航才到达100公里,需要工程师、技术人员来做性能调优,最后才